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Abstract. Internet-based information technologies have considerable potential
for improving collaboration in professional communities. In this paper, we ex-
plain the concept of user-driven specification of network information systems
that these communities require, and we describe some problems related to find-
ing the right focus for adequate user involvement. A methodological approach to
the management of specification knowledge definitions, which involves compo-
sition norms, is summarized. Subsequently, an existing conceptual graph based
definitional framework for contexts is presented. Conceptual graphs are a simple,
general, and powerful way of representing and reasoning about complex knowl-
edge structures. This definitional framework organizes such graphs in context
lattices, allowing for their efficient handling. We show how context lattices can
be used for structuring composition norms. The approach makes use of context
lattices in order to automatically verify specification constraints. To enable struc-
tured specification discourse, this mechanism is used to automatically select rele-
vant users to be involved, as well as the information appropriate for building their
discourse agendas. Consequently, this paper shows how conceptual graphs can
play an important role in the development of this key Internet-based activity.

1 Introduction

Increasingly more distributed professional communities, such as research networks, are
discovering the potential of collaboration through electronic media such as the Internet.
However, several factors contribute to making it hard to determine the optimal or even
just adequate use of information technology to support these networks in their collabo-
rative activities [1]. One reason is that most knowledge creation activities are complex,
situated, and dynamic. Another complicating factor is that numerous networked infor-
mation tools are available, from which it is often difficult to determine which ones to
use for what task purposes. Furthermore, system specification becomes even harder as
it must also be user-driven, meaning that the users themselves are to discover ’break-
downs’ in their use of the system and negotiate specification changes with other users
and implementors. Users must initiate their own specification processes, because they
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themselves are the task experts, and moreover are often only loosely organized, without
extensive organizational support for taking care of system development. For example,
the publishing of electronic journals by networks of scholars instead of by commercial
publishing houses is rapidly becoming popular. The support of the complex collabo-
rative processes involved, such as the reviewing and editing of electronic publications,
must not just be treated from a technical perspective. Rather, the new information tools
must be designed to ‘play an effective role within the social infrastructure of scholar-
ship’ [2]. The involved scholars themselves are in a good position to define this role,
as they best understand the subtleties of their requirements, and can provide volunteer
specification labour in these mostly underfunded joint projects.

To overcome the specification hurdles, structured methods for user-driven specifi-
cation are needed. Already some approaches exist, for instance rapid application devel-
opment, prototyping, and radically tailorable tools [3, 4], which more strongly involve
users than traditional systems development methods. However, some drawbacks are that
these approaches are based on traditional sequential instead of on evolutionary devel-
opment models, focus too much on implementation rather than on conceptual issues, or
support single user instead of group specification processes.

1.1 User-Driven Specification

True user-driven systems development means that each user can initiate and co-direct
the specification process, based on concrete functionality problems he experiences when
using the information system for his own purposes. Rather than doing a ‘summative
evaluation’ of the information system in progress, in which users only approve of the
overall specification process results, a user should be able to do a ‘formative evalua-
tion’. This entails that the users, rather than the developers, propose and decide upon
specification suggestions which developers only help translate into actual modifications
of the design of the system [5].

One approach that could in potential deal with the mentioned issues is process com-
position [6]. Its essence is that users of a system start with a rough definition of their
work processes which are completely supported by the set of available tools. Over time,
these specifications are gradually refined, always making sure that all processes are cov-
ered by available tool-enabled functionality. Such an approach takes into account the
empirical findings that in general users initially only need to have an essential under-
standing of their business processes and tools to be able to initiate work [7], and that
new technologies must be introduced gradually to prevent disruption of current work
practices [8].

One implementation in progress of (group) process composition is the RENISYS
specification method for research network information systems [1]. This method is dis-
cussed later on in this paper.

1.2 Finding a Focus

A major problem with process composition is that it is very difficult to determine the
exact scope of a specification process aimed at resolving a functionality problem. Find-
ing the proper scope is important in order to arrive atlegitimatespecifications, which



are not only meaningful, but also acceptable to the professional community as a whole
[1]. However, this acceptability does not mean that all users should be consulted about
every change all the time. Of course, on the one hand, all users who have an interest in
the system component to be changed need to be involved. On the other hand, however,
as few users as possible should participate in the resolution of a particular specification
problem, in order to prevent ‘specification overload’, as well as to ensure the assignment
of clear specification responsibilities.

Most current specification approaches intending to foster user participation do not
systematically analyze how to achieve adequate user involvement in specification pro-
cesses. For user participation inspecification discourse(defined as rational discussion
among users to reach agreement on the specifications of their network information sys-
tem to become more satisfactory), it is at least necessary to precisely know:

1. When to consult users?
2. Which users to consult?
3. What to consult them about?
4. How to consult them?

Question 1 has to do with how to recognizebreakdowns, which are disruptions
in work processes experienced by participants while using the information system. A
breakdown should trigger specification discourse resulting in newly defined function-
ality that better matches the real information needs of the user community. Question
4 focuses on how such specification discourse is to be systematically supported. Users
could be provided with semi-structured linguistic options (representing for instance re-
quests, assertions, promises), which are tailored to the particular specification problem
at hand. Answering these two questions does not fall within the scope of the current pa-
per. Ideas being worked out in the RENISYS project are taken from the language/action
perspective [9]. This rather new paradigm for IS specification looks at the actions people
carry out while communicating, and how this communication helps them to coordinate
their activities. One of the key paradigmatic ideas is that people can make commitments
as a result of speech acts. Such commitments in turn can be used to generateagendas
of tasks to be carried out and evaluated by the various participating users. An agenda
for a particular user thus consists of all things a user has to do, normally concerning
the conduct and coordination of goal-oriented activities. In our case, however, agenda
items refer to the specifications to be made or agreed upon of the network information
system that supports the group work.

In this article, we will concentrate on questions 2 and 3. The main issues we will
address are: (1) selecting the relevant users to participate in system specification dis-
course, and (2) determining the possibly different agendas for a particular specification
discourse for the various selected users. We will do this by developing a mechanism to
efficiently handle user-driven specification knowledge evolution using context lattices.
These were first presented in [10], and will be briefly reintroduced in Sect. 3.3. The con-
text lattices are used to (1) organize specification knowledge, (2) check whether knowl-
edge definitions are legitimate (i.e. both meaningful and acceptable), and (3) determine
which participants should be involved with what privileges in specification discourse to
resolve illegitimate knowledge definitions. In Sect. 2, the approach to knowledge han-
dling in the user-driven specification method RENISYS is described. Sect. 3 introduces



conceptual graph-based contexts and context lattices. In Sect. 4, context lattices are ap-
plied to structure what is called composition norm management, and in this way support
the specification process.

2 Specification Knowledge Handling

First, the different categories of specification knowledge distinguished in the RENISYS
method are presented. Then, the problem of how to ensure that specification changes
are covered by what is called the composition norm closure, is discussed.

2.1 Knowledge Categories

RENISYS distinguishes three types of specification knowledge: ontological (type) def-
initions, state definitions, and norm definitions. The ontologies contain functionality
specifications (what are the entities, attributes, and relationships to be represented and
supported by the IS). States define what entities are or should be actually present.
Norms determine (1) who can use the system (determined by action norms) and (2)
who should be involved in their specification (determined by composition norms). Con-
ceptual graphs are used as the underlying knowledge representation formalism because
a knowledge representation formalism is needed that is sufficiently close to natural lan-
guage to efficiently express complex specifications understandable to users, yet that is
formal and constrained enough to allow for automated coordination of the specification
process. CG theory is very well suited to this task, as argued in [1].

Type Definitions In RENISYS, the type definitions are organized into an ontological
framework consisting of three kinds of ontologies. The heart of this framework is the
core process ontology, consisting of elementary network process concepts derived from
workflow modelling theory. Built on top of these generic concepts, three domain on-
tologies are defined. A domain is a system of network entities that can be observed by
analyzing the universe of discourse from a particular perspective. The problem domain
is the UoD seen from the task perspective, the human network is the UoD observed
from the organizational perspective, and the information system is the same seen from
the functionality perspective. The domain ontologies can be customized by the user to
express concepts specific to his situation, thus allowing for conceptual evolution. Fi-
nally, the framework ontology describes a set of mapping constructs that link entities
from the various domains.

Type definitions represent functionality specifications, such as the structure of doc-
uments, or the inputs and outputs of workflows. For example, a simplified definition of
type MAILING LIST could be:

[TYPE: [MAILING_LIST:*x] -> (def) -> [INFORMATION_TOOL:?x] -
(matr) -> [RECEIVED_MAIL]
(rslt) -> [RESENT_MAIL]
(poss) <- [LIST_OWNER]].



Note that we do not use the standard type definition format introduced by Sowa,
as we want a uniform representation format that can be used for all three categories of
knowledge (i.e. types, norms, and states). Furthermore, we want to be able to represent
and infer from qualified type definitions, such as partial, proposed, and invalid type defi-
nitions. For instance, partial type definitions must be identified and represented as such.
They are incomplete definitions of the necessary properties that a concept type should
have. They are very important in guiding specification discourse, as often a group of
users will initially agree on a concept at least necessarily having a set of properties,
while also agreeing that the definition is not yet complete. A partial type definition is
thus open to further debate.

State Definitions State definitions represent states-of-affairs, which are first of all
needed to determine which entities the information system implementation must sup-
port. For example, the following state definition indicates that John Doe is the list owner
of the cg-mailing list. We thus know that all mailing list owner functions must be in-
stalled for at least this network participant.

[STATE: [MAILING_LIST: cg-list] <- (poss) <- [LIST_OWNER: John Doe]].

Also, state knowledge plays two crucial roles in the specification process of the
network information system. First, it can be used to detect incomplete or inconsistent
functionality specifications. For instance, if the type definition of a mailing list says
that there should be at least one list owner, but (unlike in the above state definition) no
such list owner has been defined, then a specification process can be started to specify
who currently plays this role. Alternatively, if no such person can be defined, it may
be that the type definition of mailing list must be revised so that this (currently manda-
tory) relation can be removed. Second, state definitions can be used as input objects
into specification processes, for instance by allowing for the identification of subjects
who can create new knowledge definitions. Such concrete assignments of specification
responsibilities are essential for network information system development to be suc-
cessful.

Norm Definitions Norm definitions represent deontic knowledge, which includes such
concepts as responsibilities, permissions and prohibitions. This knowledge can, among
other things, help to define and manage workflow and specification commitments. For-
mal models for such commitment management in a language/action context are dealt
with in speech-act based deontic logic [11]. A key concept is that of actor, which is an
interpreting entity capable of playing process controlling roles. Actor concepts them-
selves are ultimately instantiated by subjects, who are the people using and developing
the network information system.

The basic pattern of a norm definition is an actor to which the norm applies, in com-
bination with a control process (initiation, execution, or evaluation) and a transforma-
tion (a process in which a set of input objects is transformed into an output object) be-
ing controlled. Norm definitions can be subdivided into action norms and composition
norms. An action is a control process plus the controlled (operational level) workflow,
a composition is defined as a control process plus a (meta-level) specification process.



Action norms regulate behaviour at the operational level, in which case the transfor-
mations are called workflow processes. An example of an action norm is the following
permitted action, which says that a list owner is permitted to add a list member:

[PERM_ACTION: [LIST_OWNER] <- (agnt) <- [EXEC] -> (obj) -
[ADD_LIST_MEMBER]].

Composition norms, on the other hand, define desired behaviour at the specification
level: they allow users who are, through actor roles involved in workflows, to be identi-
fied as simultaneously having legitimate roles in the specification process. Three kinds
of specification processes are distinguished: creation, modification, and termination. An
example of a composition norm could be this mandatory composition:

[MAND_COMP: [LIST_OWNER] <- (agnt) <- [EVAL] -> (obj) -
[TERMINATE] -> (rslt) -> [TYPE: [LIST_MEMBER]].

The termination of a type means that a legitimate type is removed from the type hi-
erarchy together with all its definitions, which may be required if a concept is no longer
useful. This particular norm means that a list owner is required to evaluate (i.e. ap-
prove or reject) any list member type termination, which has been proposed by possibly
another actor.

Having a well-supported approach for dealing with composition norms is crucial
for managing the change process of network information systems. These norms help
to identify which actors are to be involved in a particular specification process. Fur-
thermore, they can be used to set the agenda for specification discourse, since they
indicate what knowledge definitions an actor can legitimately handle and in what way.
Thus, composition norms provide the key to answering the two questions we posed in
section 1.2.

2.2 Composition Norm Closure

Traditional information systems analysis can be characterized as taking a snapshot of
“the” sum of information requirements of an organization by a monolithic external
group of analysts. However, in network information systems development, many users
are often only temporarily involved in specification processes and this only from a very
limited perspective and mandate: trying to resolve their own particular problem or that
of others with whom they closely collaborate.

However, if every specification is linked to others and every specification must be
covered by the appropriate composition norms, a major problem arises in case of (par-
tially) changing needs: how to guarantee that proposed specification changes remain
part of thecomposition norm closure(defined as the sum of the explicitly asserted plus
all derivable composition norms), i.e., how to make sure that a proposed specification
is legitimate and also does not leave any other specification uncovered?

To deal with this problem, it is often not enough to find just one applicable norm.
Completeness is very important. For instance, if one wants to know whether the cur-
rent user, who plays a number of actor roles, is allowed to change the definition of a
particular type, all composition norms applicable to this definition need to be identified.



However, as the knowledge base of graphs grows large, checking every unorganized
composition norm by standard projections can get very cumbersome. This is especially
true when recursive operations on embedded parts must be carried out. Furthermore,
such a straightforward approach does not easily generate related contextual information,
such as the other definitions the actor specifying the current definition is allowed to
make.

Therefore, a more sophisticated norm querying and updating mechanism is needed.
Such a query mechanism, which is optimized to handle particular contexts and the re-
lations between different worlds of assertions, is formed by context lattices. Two of the
major advantages of context lattices are that they (1) allow queries to be simplified, as
embedded queries can be subdivided into their constituting parts and (2) the structure
of the knowledge base can be queried, allowing for interesting relations to be easily
discovered [10].

3 Contexts

Composition norms play a crucial role in the coordination of the user-driven specifica-
tion process, as they put constraints on who is authorized to (re)define which particular
knowledge definitions. Thus, the knowledge definitions are only true if the specifica-
tion process conditions under which they are asserted are true as well. Such conditional
sheets of assertion can be naturally represented as conceptual graph contexts [10].

Contexts are an essential building block of conceptual graph theory [12]. Building
on these notions, Mineau and Gerb´e [1997] presented a formal theory of context lattices,
which is briefly summarized here.

A context is a conceptual device that can be used for organizing information that
originates from multiple worlds of assertion. It consists of an extension and an intention.
In a context, the truth of a set of assertions (the extension) depends on a specific set
of conditions (the intention). Thus, the intention is formed by those graphs which, if
conjunctively satisfied, make the extension true. Thus, only if the intention graphs can
all be made true, do the extension graphs exist. A contextCi is defined as a tuple of two
sets of conceptual graphs:

Ci =< T;G > (1)

whereT is the intention, andG is the extension ofCi. Two functionsI andE were
defined so that for a contextCi its intentionT equalsI(Ci) and the extensionG is the
same asE(Ci).

Contexts can directly be used to represent norms. The intention of a (composition)
norm defines that some actor is capable of controlling a specification process of some
kind of knowledge definition. The graph representation of this most generic composi-
tion norm intention is:

[ACTOR] <- (agnt) <- [CONTROL] -> (obj) -> [SPECIFY] -
(rslt) -> [DEFINITION: #]

It will be used as the intention of some context, while the referent of the DEFINI-
TION concept, representing the knowledge definition being specified, will be consid-
ered as being in the extension of the same context. The format of the extension graph



depends on the type of this definition (i.e. TYPE, PERMACTION, or STATE). Exam-
ples of these definitions were given in the previous section.

3.1 Example: Mailing List

We will illustrate the ideas put forward in this paper with a short example of a specifica-
tion process typically encountered in a research network. To clarify the ideas introduced
in this paper, only threepermittedcompositions are given. In a realistic case, required
and forbidden compositions will also be needed.

The example is the following. Many research networks are supported by mailing
lists. A mailing list comes installed with a default set of properties. Some public lists al-
low any member to control the change of all their properties, which is explicitly defined
as a composition norm. Often, however, as the networks grow in scope, the mailing list
is to play new roles. For example, the purpose for which the mailing list is used could
be changed from enabling general information exchange to supporting the preparation
of a confidential report. In case of such a private mailing list, the list owner, who is a
special type of network actor, can explicitly be allowed to modify the setting of the list
parameters. Finally, (for any type of mailing list) a list owner can start the cancellation
of the action norm which says that a list applicant can register himself as a list member.

In this case, the following three (permitted) composition norms apply:
(1) In a mailing list, any network participant is permitted to control (initiate, execute,

and evaluate) modifications of mailing list properties, for example when the scope of
the group needs to be changed.

(2) In case of a private mailing list, a list owner is permitted to make modifications
of the properties of the mailing list, i.e. he may change the settings about whether the
list has open or closed subscription, whether it is moderated or not, etc.

(3) A list owner is allowed to initiate the termination of the action (norm) that a list
applicant can register himself as a list member.

As contextsCi, these composition norms could be represented as follows:

---------------------------------------------------------------------------
| C1: Perm_Comp_1 |
| i1: [ACTOR] <- (agnt) <- [CONTROL] -> (obj) -> [MODIFY] - |
| (rslt) -> [TYPE: #] |
---------------------------------------------------------------------------
| g1: [MAILING_LIST] |
---------------------------------------------------------------------------

---------------------------------------------------------------------------
| C2: Perm_Comp_2 |
| i2: [LIST_OWNER] <- (agnt) <- [EXEC] -> (obj) -> [MODIFY] - |
| (rslt) -> [TYPE: #] |
---------------------------------------------------------------------------
| g2: [PRIVATE_MAILING_LIST] |
---------------------------------------------------------------------------

---------------------------------------------------------------------------
| C3: Perm_Comp_3 |
| i3: [LIST_OWNER] <- (agnt) <- [INIT] -> (obj) -> [TERMINATE] - |
| (rslt) -> [PERM_ACTION: #] |
---------------------------------------------------------------------------
| g3: [LIST_APPLICANT] <- (agnt) <- [EXEC] -> (obj) -> [REG_LIST_MEMBER] |
---------------------------------------------------------------------------



Hereby we assume that this (partial) type hierarchy has been defined:

[T] >
[CONTROL] >

[EXEC]
[INIT]

[DEFINITION] >
[PERM_ACTION]
[TYPE]

[INFO_TOOL] >
[MAILING_LIST] >

[PRIVATE_MAILING_LIST]
[ACTOR] >

[LIST_APPLICANT]
[LIST_OWNER]

[REG_LIST_MEMBER]
[SPECIFY] >

[MODIFY]
[TERMINATE]

The contexts thus allow for a clear separation between the knowledge being spec-
ified (gi), and the modality of the actual specification process (ii). Note that contexts
instead of non-nested CGs are not only used in C3, but in C1 and C2 as well, because
the intention (actor permitted to control specification process) represents the conditions
under which the extension (knowledge definition, e.g. mailing list) may be specified.

3.2 Basic Context Inferences

Contexts have some interesting properties that can be inferred from the previous defini-
tions [10].

First, it is important to realize that a graphg can be inE(Ci) either because it has
been explicitly asserted in that context, or because it is part of the transitive closure
of the asserted graphs of that context. Thus, ifgm is asserted in some context but is a
generalization ofgn from E(Ci), thengm is also considered to be inE(Ci). Thus, in
the example,E(C2) contains bothg2 andg1, as a MAILING LIST is a generalization
of a PRIVATE MAILING LIST.

Second, ifI(Cj) < I(Ci) thenE(Cj) � E(Ci). This means that if the intention of
Cj is a specialization of the intention ofCi, then (at least) all the extension graphs ofCj

are in the extension ofCi. Thus, asi2 < i1, we can derive thatE(C1) = fg1; g2g. Note
that the contexts described in Sect. 3.1 only contain the extension graphs that have been
explicitly asserted. Later on in this paper we will also include thederivedextension
graphs.

Now that we have made some basic context inferences, we will look at how they
can be used in the construction of context lattices.

3.3 Context Lattices

A context lattice is a structure that can be used to organize a set of contexts, allowing
associations between these contexts to be made.

A context latticeL consists of a set offormal contextsC�
i , which are structured in

a partial order�.
A formal contextC�

i is represented as:



C�
i =< I�(Gi); E

�(Ti) > (2)

whereI�(Gi) = [jI(Cj)jGi � E(Cj)
andE�(Ti) = \jE(Cj)jI(Cj) � Ti

Context lattices can be used to optimize query mechanisms concerning (1) particular
contexts and (2) the relations between sets of intentions and extensions. In other words,
they can be used to make explicit the relations between different worlds of assertions
[10].

To create the context lattice for our example, we need to take the following steps:

1. Recalculate the contexts
As noted earlier, contexts can have explicitly asserted as well as derived extension

graphs. The representations ofC1, C2 andC3 only showed the explicitly asserted ex-
tension graphs:

C1 =< fi1g; fg1g >
C2 =< fi2g; fg2g >

C3 =< fi3g; fg3g >

With completely calculated extensions (using the inferences of section 3.2 to recal-
culateE(Ci)) the contexts can be represented as:

C1 =< fi1g; fg1; g2g >
C2 =< fi2g; fg1; g2g >

C3 =< fi3g; fg3g >

Note thatC1 andC2 now have the same set of extension graphs.

2. Calculate the formal contexts
For each context, we now calculate the formal context (usingC�

i =< I�(Gi); E
�(Ti) >).

C�

1
=< fi1; i2g; fg1; g2g >

C�

2
=< fi1; i2g; fg1; g2g >

C�

3
=< fi3g; fg3g >

ForC1 andC2 the same formal context is produced.

3. Calculate the context lattice
Each formal context should occur only once, so redundant formal contexts (i.e. the

aboveC�
2 ) must be removed. Furthermore, in order to create a lattice, we must also

add a formal context including all extension graphs, as well as a context including all
intention graphs. After renumbering the formal contexts, the resulting context lattice is
as represented in fig. 1:

C�

1 =< fg; fg1; g2; g3g >

C�

2 =< fi1; i2g; fg1; g2g > C�

3 =< fi3g; fg3g >

C�

4 =< fi1; i2; i3g; fg >

�
�
�

��

X
X
X
XX

�
�
�
��

X
X
X

XX

Fig. 1. The Context Lattice for the Example



4 Structuring Composition Norm Management

On top of the context lattice structure, a mechanism that allows for its efficient query-
ing has been defined [10]. One of its main advantages is that complex queries consisting
of sequences of steps and involving both intentions and extensions can be formulated.
This mechanism can be used for a structured yet flexible approach to norm manage-
ment in specification discourse, by automatically determining which users to involve in
discussions about specification and changes and what they are to discuss about (their
agendas).

There are two main ways in which a context lattice can be used in a user-driven
specification process. First, it can be used to assess whether a new knowledge definition
is legitimate by checking if a particular specification process is covered by some com-
position norm. As this is a relatively simple task of projecting the specification process
on the composition norm base, we do not work out this application here.

The second application of context lattices in the specification process is applying
(new) specification constraints (constraints on the relations that hold between different
knowledge definitions) on the existing (type, norm, and state) knowledge bases. This
differs from the first application as, after a constraint has been applied, originally legit-
imate knowledge base definitions may become illegitimate, and would then need to be
respecified.

In this section we will first give a brief summary of how context lattices can be
queried. Then, it will be illustrated how this query mechanism can play a role in compo-
sition norm management, by applying it to our example in the resolution of one realistic
specification constraint.

4.1 Querying Concept Lattices

In order to make series of consecutive queries where the result of one query is the input
for the embedding query, which is needed for navigating a context lattice, we need two
more constructs. First, we need to be able to query a particular context extension or
intention. Second, we must be able to identify the context which matches the result of
an extension or intention-directed query.

For the first purpose, two query functions have been defined that allow respectively
extension or intention graphs to be retrieved from a specified formal context [10]:

�E�(C�; q) = fg�E(C�)jg � qg (3)

�I�(C
�; q) = fg�I(C�)jg � qg (4)

Furthermore, Mineau and Gerb´e have constructed two context-identifying func-
tions:

CE(G) =< I�(G); E�(I�(G)) > (5)

CI(T ) =< I�(E�(T )); E�(T ) > (6)

Space does not permit to describe the inner workings of these functions in detail
(see [10] for further explanation). Right now, it suffices to understand that these func-
tions allow the most specific context related to respectively a set of extension graphsG



or a set of intention graphsT to be found Together, these functions can be used to pro-
duceembedded queriesby alternately querying and identifying contexts, thus enabling
navigation through the context lattice.

4.2 Supporting the Specification Process

In the applications of context lattices, discussed in the previous section, the following
general steps apply:

1) Check either the specification of a new knowledge definition against the compo-
sition norm base or the specifications of an existing knowledge base against a specifi-
cation constraint.

2) Identify the resulting illegitimate knowledge definition(s).
3) Identify appropriate ‘remedial composition norms’ (i.e. composition norms in

which the illegitimate knowledge definition is in the extension)
4) Build discourse agendas (overviews of the specifications to discuss) for the users

identified by those remedial composition norms, so that they can start resolving the
illegitimate definitions.

These processes consist of sequences of queries that switch their focus between
what is being defined and who is defining. For this purpose, the functions provided by
context lattice theory are concise and powerful, at least from a conceptual point of view.

One way in which we can apply context lattices is by formulatingspecification
constraints, which constrain possible specifications and can be expressed as (sequences
of) composition norm queries. Note that the example of the resolution of a specification
constraint presented next is simple, and the translation into context lattice queries is
not yet very elegant. However, what we try to present here is the general idea that
flattening queries using context lattices is a powerful tool for simplifying and helping
to understand queries with respect to the contexts where they apply. In future work, we
aim to develop a more standardized approach that can apply to different situations.

4.3 An Example

One specification constraint could be:
“Only actors involved in the definition of permitted actions are to be involved in the

definition of (the functionality of) information tools”.
The constraint guarantees that enabling technical functionality is defined only by

those who are also involved in defining the use that is being made of at least some of
these tools. This specification constraint and much more complex ones can be helpful to
realize more user-driven specification, tailored to the unique characteristics of a profes-
sional community. The power of the approach developed in this paper is that it allows
such constraints to be easily checked against any existing norm base, identifying (now)
illegitimate knowledge definitions, and providing the contextual information necessary
for their resolution.

We will illustrate these rather abstract notions by translating the above mentioned
informal specification constraint into a concrete sequence of composition norm queries.

Decomposing the specification constraint, we must answer the following questions:



1. Which actors control the specification of which information tools?
2. Are there illegitimate composition norms (because some of these norm actors are not
also being involved in the specification of any permitted actions?)
3. Which actors are to respecify these illegitimate norms on the basis of what agendas?

Questions1-3 can be decomposed into the following steps (this decomposition is
not trivial, in future research we aim at providing guidelines to achieve it):

1a.Determine which specializationsgj of information tools have been defined. The
querys1 should start at the top of the context lattice, as this context contains all exten-
sion graphs:

s1 = �E� (C�

1
; q1) = fg1; g2g = f[MAILING_LIST],[PRIVATE_MAILING_LIST] g

whereq1 = [INFO TOOL]

1b. For each of these information toolsgj , determine which actorsai control its
specification:

s2 = �I� (CE(g1); q2) = �I� (C
�

2
; q2) = fi1; i2g

s3 = �I� (CE(g2); q2) = �I� (C
�

2
; q2) = fi1; i2g

whereq2 = [ACTOR:?] <- (agnt) <- [CONTROL] -> (obj) -> [SPECIFY] -
(rslt) -> [TYPE]

a2 = [ACTOR:?] = f[ACTOR],[LIST_OWNER] g

anda3 = [ACTOR:?] = f[ACTOR],[LIST_OWNER] g

2a.Determine which actorsai are involved in the specification of permitted actions.
This query should be directed toward the bottom of the context lattice, as this context
contains all intention graphs (which in turn include the desired actor concepts):

s4 = �I� (C
�

4
; q4) = fi3g

whereq4 = [ACTOR:?] <- (agnt) <- [CONTROL] -> (obj) -> [SPECIFY] -
(rslt) -> [PERM_ACTION]

a4 = [ACTOR:?] = f[LIST_OWNER]g

2b. Using a4, determine, for each type of information toolgj (see1a), its corre-
spondingsi and actorsai(see1b), which actorsa

0

i currently illegitimately control its
specification process.

g1: [MAILING_LIST]

a
0

2
= a2 � (a2 \ a4) = f[ACTOR]g

g2: [PRIVATE_MAILING_LIST]

a
0

3
= a3 � (a3 \ a4) = f[ACTOR]g

2c.For each tool identified by thegj having illegitimate controlling actorsa
0

i, define
the illegitimate composition normsc

0

k =< il; gj > by selecting from thesi from 1b
thoseil which containa

0

i:
c
0

1
=< i1; g1 >

c
0

2
=< i1; g2 >

3. In the previous two steps we identified the illegitimate norms. Now we will pre-
pare the stage for the specification discourse in which these norms are to be corrected.
A composition norm does not just need to be seen as a context. It is itself a knowledge
definition which needs to be covered by the extension graph of at least one other compo-
sition norm, which in that case acts as a meta-norm. In order to correct the illegitimate
norms we need to (a) identify which actors are permitted to do this and (b) what items
should be on their specification agenda. This step falls outside the scope of this paper
but is presented here to provide the reader with the whole picture. A forthcoming paper
will elaborate on meta-norms and contexts of contexts.



3a.For each illegitimate composition normc
0

k, select the actorsai from the permit-
ted (meta) composition normscm which allow thatc

0

k to be modified:1
cm =< im; gm >

whereim = [ACTOR:?] <- (agnt) <- [EXEC] -> (obj) -> [MODIFY] -
-> (rslt) -> [PERM COMP: #]

andgm = c
0

k

3b.For each of these actorsai, build an agendaAi. Such an agenda could consist of
(1) all illegitimate normsc

0

k that each actor is permitted to respecify and (2) contextual
information from the most specific context in which these norms are represented, or
other contexts which are related to this context in some significant way.

The exact contextual graphs to be included in these agendas are determined by the
way in which the specification discourse is being supported, which is not covered in
this paper and needs considerable future research. However, we would like to give some
idea of the direction we are investigating. In our example, we identified the illegitimate
(derived) composition norm ‘any actor is permitted to control (i.e. initiate, execute, and
evaluate) the specification of a private mailing list’ (< i1; g2 >). From its formal context
C�
2 it also appears that a list owner, on the other hand, is permitted to at least execute the

modification of this type (< i2; g2 >). If another specification constraint would say that
one permitted composition for each control process category per knowledge definition
suffices, then only the initiation and evaluation of the modification now would remain to
be defined (as the execution of the modification of the private mailing list type is already
covered by the norm referring to the list owner). Thus, the specification agendasAi for
the actorsai identified in3acould include : ‘you can be involved in the respecification
of the initiation and the evaluation of the modification of the type private mailing list’,
as well as ‘there is also actor-such-and-such (e.g. the list owner) who has the same (or
more general/specific) specification rights, with whom you can negotiate or whom you
can ask for advice.’. Of course, in a well-supported discourse these kinds of agendas
would be translated into statements and queries much more readable to their human
interpreters, but such issues are of a linguistic nature and are not dealt with here.

5 Conclusions

Rapid change in work practices and supporting information technology is becoming an
ever more important aspect of life in many distributed professional communities. One
of their critical success factors therefore is the continuous involvement of users in the
(re)specification of their network information system.

In this paper, the conceptual graph-based approach for the navigation of context
lattices developed by Mineau and Gerb´e [1997] was used to structure the handling of
user-driven specification knowledge evolution. In virtual professional communities, the
various kinds of norms and the knowledge definitions to which they apply, as well as
the specification constraints that apply to these norms, are prone to change. The formal
context lattice approach can be used to guarantee that specification processes result in

1 For lack of space, we have not included such composition norms in our example, but since
they are also represented in a context lattice, the same mechanisms apply. The only difference
is that the extension graphs are themselves contexts (as defined in Sect.3).



legitimate knowledge definitions, which are both meaningful and acceptable to the user
community. Extracting the context to which a query is applied, provides simpler graphs
that can more easily be understood by the user when he interacts with the CG base. It
also provides a hierarchical path that guides the matching process between CGs, that
would otherwise not be there to guide the search. Even though the computation cost
of matching graphs would be the same, overall performance would be improved by
these guidelines as the search is more constrained. But the most interesting part about
using a context lattice, is that it provides a structuring of different contexts that help
conceptualize (and possibly visualize) how different contexts (‘micro-worlds’) relate to
one another, adding to the conceptualization power of conceptual graphs.

In future research, we plan to further formalize and standardize the still quite con-
ceptual approach presented here, and also look into issues regarding its implementation.
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