
Improving the Testbed Development Process in
Collaboratories

Aldo de Moor

Infolab, Dept. of Information Systems and Management
Tilburg University, the Netherlands

ademoor@uvt.nl ??

Abstract. Collaboratories are increasingly important as instruments for distrib-
uted work. They are highly complex socio-technical systems, in which often ad-
vanced ICTs need to be carefully tailored to subtle work practices and organi-
zational structures. However, despite their importance and potential impact, not
many successful examples of collaboratories exist. One key obstacle is the com-
plexity of the testbed development process in which the collaboratory is to evolve.
In this paper, we propose a method for collaboratory improvement. We show how
conceptual graph theory can be used to help improve the testbed development
process.

1 Introduction

The scientific research community is one of the creators and oldest users of the Inter-
net. Already when the first computer networks became operational at the end of the
sixties, researchers started using their potential for collaboration. Although originally
intended for the mere exchange of files, enthusiastic users immediately invented e-mail,
one of the current killer applications. Internet-based technologies have developed at a
phenomenal rate, both in reach and range. The privileged happy few from the early
days have become a worldwide population of hundreds of millions of active users.
Moreover, the primitive file exchange technologies from the beginning have evolved
into a huge toolbox of functionalities. Much attention has been paid to the needs of
individual users: e-mail, information retrieval applications like search engines, office
tools, and so on. However, collaborative applications are still underdeveloped. Despite
the billions of dollars poured into research into computer supported cooperative work,
most collaborators still use powerful but primitive technologies such as mailing lists.
Although these tools have proven to be very successful in bringing people together into
virtual communities, they have many limitations such as information overload, naviga-
tion problems, primitive workflow management capabilities, and lack of customization.
This negatively affects motivation and the accomplishment of joint objectives.

One major cause of problems is that the usefulness of knowledge tools is not rig-
orously evaluated [20]. The scientific community being global and therefore to a large
extent virtual in nature, and having a strong drive to collaborate, is among the first to

?? Proc. of the 12th International Conference on Conceptual Structures (ICCS 2004), Huntsville,
Alabama, July 19-23, 2004. Lecture Notes in Articicial Intelligence, Springer, Berlin



have become aware of the need for systematic support for the evolution of its socio-
technical systems. It is no longer enough to just offer a toolbox with many hammers
and nails, and then to wait for a virtual house in which to collaborate to construct it-
self. Instead, perspectives, methods, and techniques need to be developed in which such
socio-technical systems are developed more effectively and efficiently. This takes place
in collaboratories.

A collaboratory consists of ”various tools and technologies ... integrated to provide
an environment that enables scientists to make more efficient use of resources wher-
ever they are located [19]”. Since research collaboration is highly complex, constantly
changing, and in need of many sophisticated ICTs, such integration of tools into a com-
plete environment is not trivial. In collaboratories, a structured and fine-tuned testbed
development process should therefore be adopted in which guided experiments with
various technologies efficiently lead to more effective community information systems.
However, what properties such an evolutionary process should have, let alone how it is
itself to be supported by information systems is still unclear. In earlier work, we outlined
parts of the solution for collaboratory process improvement. In [6], we described how
Conceptual Graphs could be used to improve the pragmatic inquiry process needed for
more focused testbed development. In [5], we explained how formally modelling tool
contexts could be helpful to this purpose as well. Using this previous work as a starting
point, our purpose in this paper is twofold: (1) to explicitly model the collaboratory
testbed development process using conceptual graphs and (2) to use this formalization
to improve this process. Conceptual graphs are the formalism of choice since they are
very useful in pattern matching, which we will show to be essential in this process.

In Sect. 2, we show how collaboratories can be viewed as evolving socio-technical
systems. Sect. 3 studies some knowledge structures useful for the modelling of collabo-
ratory improvement. In Sect. 4, we present our method for collaboratory improvement.
We end the paper with conclusions.

2 Collaboratories: Evolving Socio-Technical Systems

Already from the beginning, collaboratory research has focused on socio-technical sys-
tems. For example, the definition adopted by the National Science Foundation in the
early years of collaboratory research was: ” [A collaboratory consists of] various tools
and technologies [...] integrated to provide an environment that enables scientists to
make more efficient use of resources wherever they are located” [19]. However, the in-
sight is gaining ground that collaboratories are especially entities that support rich and
recurring interaction around a common research focus, the critical element for their suc-
cess thus being the opportunities they allow for encounters, discussions, and the sharing
of ideas [10]. A very important question therefore is ”how to support communication
that permits human cooperation even when the evolutionary social mechanisms that
depend on proximity are absent [15].”

2.1 The Testbed Development Process

Despite their great potential, collaboratories have not grown as much as originally en-
visioned. This is not so much a failure of the original vision, but a consequence of the



great difficulty of supporting complex group work in virtual settings [10]. Successful
collaboratory development requires (1) a system architecture and integration to explore
ways that people and machines can use component technologies most effectively, (2)
a research program to study the conditions required for collaboration, and (3) user-
oriented rapid-prototyping testbeds, to understand the impact of the technologies used
[19]. Already in the very first report on collaboratories, the essential role of testbed de-
velopment for collaboratory construction in various scientific disciplines was stressed
[17]. Testbeds must be established in actual working contexts, where the required tools
for data access and communication can be designed, developed, and tested within a pro-
gram of prototyping, testing, and evaluation that can support continuous development.
Mary Keeler’s PORT (Peirce Online Resource Testbeds) project is an important initia-
tive, which aims to produce an integrated context view of such development, using a
collaboratory on the interpretation of Charles Peirce’s manuscripts as an example [13].

To conceptualize an approach for formally modelling and supporting the testbed
improvement process, we build on two streams of thought: Douglas Engelbart’s ideas on
improving the process of co-evolution of the social and the technical systems, and socio-
technical interaction networks as a way of formally modelling improvement patterns.

Engelbart has spent his life studying how to improve systems development by long-
term, pragmatically guided whole-system evolution. With today’s dazzling rate of tech-
nological progress, tool functionalities are developing faster than man’s ability to use
them to the fullest. Engelbart’s mission is to find ways to accelerate our intellectual de-
velopment, so that we can keep up with our tools and improve their co-evolution with
work practices [12]. In his view, one is not just to focus on the co-evolution of Human
and Tool-systems, but also to continuously improve the design process itself [8]. In
his CODIAK (COncurrent Development, Integration and Application of Knowledge)
process, he describes a vision for increasing the capabilities of organizations to ”im-
prove their improvement” [9]. It consists of intelligence collection (to identify prob-
lems, needs, and opportunities), dialog records (to conduct and coordinate improvement
dialogs), and knowledge products (that capture relevant improvement project status and
plans). However, these artefacts are not an end, but only a means to improve improve-
ment capabilities and processes. This is in line with modern views on knowledge man-
agement, which claim that tacit and explicit knowledge both have specific, inter-related
roles to play in optimizing knowledge creation processes [18].

A good way to capture the structure and behaviour of collaboratories, is to see them
through the lens of socio-technical interaction network (STIN) theory, which is rooted
in actor-network theory [14]. Using the theory to do careful empirical analyses of work
situations, it was found that almost identical technologies are often configured very
differently in practice. The theory acknowledges that collaboratories can be seen as
layered systems of technical and social components. However, it takes issue with the
fact that in traditional socio-technical systems analysis the technology often predomi-
nates. In contrast, STIN analysis has a more integrated view of the interaction between
humans and technologies. Technologies are not a given, to which the social system has
to adapt. Rather, there are many social characteristics that help shape the technologies,
but are also being formed by them. STIN models take into account such issues as ac-
tor relations, content control, resource dependencies, work to make the system useful



and sustainable, translations to mobilize resources, and business model and governance
structures. The models can be used to analyze the complex interactions between peo-
ple, between people and technologies, and between technologies themselves. Social
analysis is required in all stages of the collaboratory lifecycle, including planning, de-
velopment, configuration, use, and evolution. These forms of analysis acknowledge that
’users’ are too shallow a construct for obtaining useful insight in collaboratory improve-
ment. Instead, the models provide socially richer characterizations of people working
and communicating in complex, overlapping socio-technical networks.

Combining Engelbart’s views on testbed development improvement with the ba-
sic ideas behind socio-technical interaction networks seems a feasible approach toward
modelling testbed development improvement. However, both approaches are still qual-
itative, informal and disjoint. Collaboratory improvement, with all its inherent opera-
tional and evolutionary complexities, could benefit greatly from a - partially - formal
approach. In this way, more systematic analysis methods and supporting tools can be
developed. In the remainder of this article, we will outline the foundations of how such
an approach could look like, using conceptual graphs as the knowledge representation
and reasoning formalism. First, we introduce some relevant knowledge structures.

3 Knowledge Structures for Collaboratory Improvement

Based on Engelbart’s views, we distinguish several systems providing contexts of in-
terpretation of tools. Next, we acknowledge the need for improvement patterns, and
analyze one promising direction: a socio-technical pattern language. We then explain
why conceptual graphs are our knowledge formalism of choice.

3.1 Tool Contexts in Testbed Development

As a starting point for our approach, we use Engelbart’s insights into co-evolution im-
provement to create a layered tool context model. Focal constructs in these contexts
are processes, since obtaining better quality testbed dynamics is at the core of what is
needed. Based on Engelbart, we distinguish four layers of testbed processes:

– Information/Communication (I/C) processes: the processes enabled by the tools.
– Workflows: the processes in which tasks are executed and coordinated so that the

goals of the community can be accomplished.
– Design processes: the processes in which the users reflect on their work and I/C

processes and propose modifications to the design of their socio-technical system
so that workflows can become more effective and efficient.

– Improvement processes: the processes in which the design processes themselves are
made more effective and efficient.

These processes are organized in four nested systems: the information system, work
system, design system, and improvement system respectively. Each higher-order system
provides a context for the system it embeds. For example, the information system is em-
bedded by the work system, which thus defines the context of use of the information



system. Similarly, the design system provides the context of change of the work system,
and the improvement system the context of optimization of the design system. Collab-
oratory improvement can only occur systematically if all systems and their interfaces
are clearly defined at the level of detail required by the particular community. The ad-
vantage of modelling collaboratory improvement as a set of embedded systems is that
it allows for the abstracting of details less relevant to a particular improvement purpose.
For instance, sometimes the improvement may focus on the information system, when a
new tool needs to be evaluated. In other cases, the community may not be interested so
much in the particular details of its current socio-technical system, but want to focus on
how it can improve its evolutionary practices. Using this contextual framework, testbed
development methods can be more systematically created, interpreted, and changed.

3.2 Improvement Patterns

Using the tool context model allows us to conceptually distinguish between the layered
elements of improvement knowledge. However, in order to reason about properties of
this knowledge, such as about knowledge gaps, we need to use modelling approaches
that are well suited to the particulars of this kind of knowledge. As the theory and find-
ings on socio-technical interaction networks show, socio-technical systems knowledge
evolves in fragmented, partial ways. Furthermore, testbed development knowledge of-
ten has different degrees of specificity: at the beginning of a project, some aspects, such
as which particular workflows to support by what tools can remain undefined, while
some other issues, as who to involve in a particular design process may need to be very
precisely defined. How to combine this fragmented and diffuse knowledge evolution
process with the systemic view proposed by Engelbart?

Patterns are good ways to capture such knowledge and place it in a system con-
text. A pattern is something designed or used as a model for making things (Merriam-
Webster). The following statements more precisely indicate the power of patterns:

A pattern is a careful description of a perennial solution to a recurring
problem within a building context, describing one of the configurations which
brings life to a building.

A pattern language is a network of patterns that call upon one another.
Patterns help us remember insights and knowledge about design and can be
used in combination to create solutions. (both quotes from Alexander et al,
1977, in [22]).

Humans are very good at using patterns to order the world and make sense of things
in complex situations [16]. In the information systems literature, patterns are gaining
prominence as a way to deal with the complexity and dynamics of the real world. For
example, workflow patterns can be used to develop ideas on how to implement certain
business requirements given that a workflow server already exists. Others focus on de-
veloping pattern languages that capture communication knowledge of large, distributed
communities [22]. In collaboratory evolution, a structured representation facility for
efficiently reporting, tracking, and mapping advancements within projects is essential,



making it possible to compare patterns of development and trace similarities and differ-
ences among project technical requirements [13].

Thomas et al. give a good description of the role that patterns can play in socio-
technical systems improvement, and propose a socio-technical pattern language to make
the software development cycle more effective and efficient [24]. In outlining the ele-
ments and use of this language, they pose three important questions: (1) how to guide
pattern authors to help produce clear, understandable and helpful patterns? (2) how to
support users to explore a design space using patterns? (3) what is the relation between
a pattern and software components?

Important as an informal pattern language may be, it is not enough to ensure ef-
fective and efficient pattern use. Improvement patterns outline dependencies between
events in the collaboratory and actions to be taken, by the system or the users. Often,
human beings will need to be the agents to signal the need for change, but computers can
help monitoring and managing the complex chain of change actions required. Even in
small examples like the case mentioned next, people are already at a loss of doing so, as
many of the case participants have reported. Thus, the informal pattern language helps
to identify what needs to be done when, but in addition some (semi)-formal knowledge
representation and reasoning method can be helpful to activate that knowledge. For this
purpose, conceptual graphs are our formalism of choice.

3.3 Using Conceptual Graphs

Collaboratories are complex and dynamic networks. Important properties of networked
societies are that they are loosely organized, their boundaries are permeable, they are
often imperfectly integrated, have (reconfigurable) nodes that may be part of other net-
works, and have flat and recursive hierarchies [14, 25]. Semantic networks are useful
forms of network knowledge representation, as they use links to both record facts and
to provide associative access paths, by which facts can be accessed from each other.
These paths are then the basis for efficient reasoning algorithms [27]. In fact, the ability
to represent and use these links is essential in defining the knowledge of a collaborative
community [2].

Conceptual graphs are a flexible and extensible method for knowledge represen-
tation. Conceptual graphs are particularly useful forms of semantic networks, as they
also include generalization hierarchies (of types, relations, and complete graphs), with
a set of powerful operations that make use of properties of the hierarchies of graphs
and their components. Conceptual graphs not only allow the description of complex
domain knowledge, but also to validate that knowledge against meta-knowledge about
the domain. Thus, they are very well suited to represent and reason about the context of
pattern knowledge, which, as we argue, is a prerequisite in collaboratory modelling.

4 Towards a Method for Collaboratory Improvement

The previous section outlined the main knowledge structures needed to conceptualize
collaboratory improvement, and presented a context- and pattern-based view on the



testbed development process. The current section describes the method that formal-
izes the process in which these knowledge structures are put to use. The method uses
conceptual graphs as a formal backbone to initialize focused conversations for specifi-
cation. To illustrate the method, we first introduce a case. We then examine the role of
conversations for specification in collaboratories. To better support these conversations,
a collaboratory improvement ontology is introduced, which forms the conceptual basis
for our architecture of collaboratory improvement systems.

4.1 Case: the Tools-Yak Community

Blue Oxen Associates1 aims to develop the art and science of collaboratories and in this
way to contribute to the common good. One of its initiatives is to develop collaborato-
ries on collaboratories. To this purpose, it hosts several mailing lists, one of them being
the Tools-Yak list2. By discussing the ways tools could and should be used in collabo-
ratories, and then implementing and testing proposed solutions, the community formed
around this list aims to find principles and practices that contribute to better socio-
technical systems for collaboratories. The list has been operational since December
2002. The list has attracted and sustained high-quality discussions, resulting in several
interesting experiments and evaluations. As such, it seems a good candidate to illustrate
some of the ideas proposed in this paper.

To get an idea of the complexity of collaboratory conversations, we show some
illustrative data. For the example, we analyzed the mailing list archive of the first half
year of the Tools-Yak community. As in this paper we cannot go into depth, we give an
example of only one particular tool being examined in the community: Purple Numbers.
One problem with Web pages is that it is hard to refer to specific items in a page.
This makes linking often too coarse-grained. To increase the granularity of web links,
software has been developed to automatically add ’purple numbers’ to each paragraph
in a web page. Instead of just linking to a page and then making cumbersome and
possibly erroneous references to the ”second section, first line”, one can now include
a link to the specific paragraph of a Web document. It is a simple (technical) idea,
but turns out to have important socio-technical ramifications. This is illustrated by the
following key indicators:

From December 2002 - May 2003, 95 mails were exchanged on the implementation
or use of purple numbers. 17 people were involved in those discussions, with an average
of 5.6 mails per person, and a standard deviation of 6.0. In this period, purple numbers
were mentioned in no less than 23 threads. The average length of those parts of the
threads in which purple numbers were mentioned, was 4.1, with a standard deviation of
6.6. There were several interesting outliers: one person, a coordinator of the community,
contributed 24 messages. Furthermore, one thread, on the role of purple numbers in e-
mail was extremely long: 31 messages.

Quantitative data on collaboratory improvement are still scarce in the literature. Al-
though benchmarks are lacking to fully interpret their meaning, the presented indicators
may help to appreciate the complexity of collaboratory development. They are typical

1 http://www.blueoxen.org
2 http://collab.blueoxen.net/forums/tools-yak/



of successful virtual communities, in which there is broad participation, some of it initi-
ated by a facilitator, and in which a wide range of topics is discussed, sometimes leading
to passionate debate. However, in Tools-Yak, many community members have voiced
the concern that the quality of the collaboratory improvement content is excellent, but
that many good ideas are lost because of their fragmentation across threads and lack
of follow-up. Thus, much is to be gained by improving the quality of the collaboratory
improvement process.

4.2 Conversations for Specification

The lifeblood of any community, collaboratories not excluded, are conversations. There
are many types of work-related conversations, one of which is the conversation for
action, in which the goal is to coordinate explicit cooperative action [26]. Another major
class of conversations in collaboratories are conversations for specification. We define
such a conversation as a self-contained unit of communication to accomplish certain
specification objectives, like the specification of an experiment for testing a tool in
its context of use. Evidence for the effectiveness of predefined conversation models
is ambiguous, however [1]. We therefore require a conversation to be only partially
structured in the sense that only main specification process entities need to be defined.
However, the format of the utterance acts in which these definitions are made can remain
free, as is the case in e-mail conversations. We propose that such partially-formalized
conversations are crucial in providing adequate support for collaboratory improvement.

There is great value in free-form e-mail message exchange, as it does not constrain
users in artificial formats which may have little meaning to them. However, e-mail does
not support productive conversations per se [21]. Its free form is not only its strength,
but also its weakness. Most explicit dependencies in e-mail are chronological: some-
body sends an e-mail with a question or an idea, one or more people respond, those
replies themselves attract new replies, and so on. Mostly, e-mail discussions on a partic-
ular topic are prolonged, divergent, and repetitive. Such problems lead to many process
inefficiencies, as has been studied extensively in, for example, the literature on the IBIS
(issue-based information systems) paradigm [3]. We conjecture that such conversation
process inefficiencies, not lack of motivation, may be one of the most important reasons
that successful collaboratories are so few and far between.

The question now is: can we reduce conversation inefficiencies using some form
of (conceptual graph-based) formalization, without losing the strengths of informal (e-
mail-based) conversation? In other words, can formalization, used wisely, contribute
to collaboratory improvement? The answer is to be found in defining a practical form
of incremental formalization. This enables users to choose when and how to add finer-
grained, computer-readable codification to informal content [23]. In this process, bound-
ary objects are defined: objects which are both plastic enough to adapt to local needs
and the constraints of several parties employing them, yet robust enough to to maintain
a common identity across sites (Star and Greisemer in [23]). These formal boundary
objects form a process space that circumscribes rather than exactly prescribes all as-
pects of collaborative work [11]. As such, this way of thinking fits very well with the
pattern-oriented design philosophy.



4.3 A Collaboratory Improvement Ontology

The core of the formal part of our architecture is a collaboratory improvement ontology.
The current ontology is by no means complete, but forms a sufficient root hierarchy to
be further refined and extended in future collaboratory research efforts.

At the heart of collaboratory improvement is the process of pragmatic inquiry, as
described in [6]. Here, the improvement process is seen as a continuous process of
hypothesis testing on the role that tools should play in the collaboratory. Proposed hy-
potheses on, for example, which tools to use to support a particular workflow, can be
implemented and tested, and their usage evaluated based on certain community-defined
criteria, such as security and userfriendliness. After evaluation, a hypothesis is labelled
either as failed or succeeded. The socio-technical system itself can be defined in many
different constructs, three of which are named here: element-definitions describe parts
of the various (information, work, design, and improvement) subsystems making up
the total socio-technical system. Mappings connect elements from these subsystems.
One example of a mapping is a support definition, which links tools in the information
system to workflow definitions in the work system. Socio-technical (system) patterns,
finally, can be constructed of any (cross-sections) of the other elements. For example,
”Who Speaks for Wolf” is a powerful socio-technical pattern aimed at engaging all the
stakeholders in a design discussion, also those who are absent at a meeting[24]. The
focus of this particular pattern is on roles and processes in the design system: make
sure to involve all end users in changes to their socio-technical system, etc. However,
it also optimizes this process in the improvement system, specifying, for example that
bad designs need to be weeded out, that stakeholders should be involved in the design
process early, etc. Such qualifications of the design process should be modelled in the
highest-level improvement system. The type hierarchy of the ontology is given next.

T > T > T >
Criterion > Process > System >
Definition > Design_Proc Des_Sys

Element I/C_Proc Impr_Sys
Mapping > Impr_Proc > Info_Sys

Support Propose_Hyp Work_Sys
STS_Pattern Test_Hyp Tool >

Hypothesis > Workflow > Mailing_List
Prop_Hyp Archive Wiki
Tested_Hyp > Discuss ...
Failed_Hyp ...
Succ_Hyp

Note that many of these concepts have proper type definition graphs. These can be
used to enforce required semantics, but have been omitted for lack of space. Further-
more, this ontology contains some domain-specific concept subtypes, such as Mailing
List and Wiki-Tools, and Discuss and Archive-Workflows. In other cases, these specific
types could be different.

4.4 An Architecture for Collaboratory Improvement Systems

Fig. 1 outlines the architecture of the system we propose to be used in support of the
collaboratory improvement process. It is based on Dan Corbett’s important vision of



Index Wizard
Key

E-Mail
STS-
Graph

STS-KB

STS-
Ontology

Improv-
Query

Projection

Generalize STS-
Matches

Presentation
Wizard

Selected
STS-
Graph

MaxJoin

Refined
STS-
Graph

Fig. 1. An Architecture for Collaboratory Improvement Support

a Knowledge Conjunction Toolbox. This vision allows knowledge to be continuously
refined and extended, crucial in any evolving design situation. In Corbett’s approach,
user-drawn graphs are checked for canonicity by the system. This canonical graph can
then be used as an index to search the knowledge base for matching graphs. If a match
is found, the user can extend his graph by unifying it with a retrieved graph. If unifica-
tion fails, one or more concepts in the query can be generalized, and a new attempt at
unification can be made [4].

The outline of our architecture is as follows. As e-mail conversations for speci-
fication take place, users can identify key mails. These are e-mails in which, in the
user’s opinion, important collaboratory improvement suggestions are made. For exam-
ple, the author of the very first e-mail to Tools-Yak, Eugene, indicated that two tools had
been installed: Mailing Lists and Wikis. The mailing list was to support the discussion
and list archiving-workflows, whereas the Wiki was to be used for management of the
knowledge obtained in the collaboratory discussion.

As soon as a key mail has been recognized, the Index Wizard is invoked. In a simple
(pseudo-natural language) dialogue, the user is quizzed by the system. To do so, it
can use (an extended version of) the ontology given above. Many advanced querying
techniques have been developed in the CG community over the years. A very simple
scenario of how a key mail could be indexed is the following.

– After Eugene indicates that the current mail is a key mail, the system presents Eugene with
list of indexing options:
(a) Describe tool functionalities;
(b) Describe workflow properties;
(c) Describe workflow support



– Eugene selects option (c)
– The system retrieves all subtypes of this Tool-concept, including Blog, Mailing List and

Wiki; the same goes for the subtypes of Workflow. The system presents these concepts as
a simple HTML-pulldown menu, from which Eugene has to select which workflow is sup-
ported by which tool. Furthermore, he is asked whether the discussion is about the results
of an experiment already conducted, and whether this experiment was successful or not, or
whether it is about a new experiment. The system would store this result by adding a relation
to the STS-graph with a Succ Hyp, Failed Hyp, or Prop Hyp concept, respectively.

The result of this human-machine dialogue is an STS (socio-technical system)-
graph, which is stored in the STS-knowledge base. In case of the first mail, this graph
obtained from the dialogue could look like this:

[STS_Pattern] -
(Part) -> [Prop_Hyp]
(Part) -> [Support] -

(Inst) -> [Mailing_List]
(Obj) -> [Discuss]

(Part) -> [Support] -
(Inst) -> [Mailing_List]
(Obj) -> [Archive]

(Part) -> [Support] -
(Inst) -> [Wiki]
(Obj) -> [Knowledge_Management]

Note that the graph represents a proposed hypothesis: the coordinator expects the
tools to be used this way, but as the intensity of the discussion in the following half year
has shown, many modifications were proposed. Had our system been available, many
additional graphs could thus have been added to the knowledge base.

Now, assume that Mary, the coordinator of the PORT collaboratory, would like to
find out about possibly useful experiences and contacts related to the following ques-
tion she has: are there actually any successful user experiences with tools for knowledge
management in collaboratories? Her interaction with the index-wizard leads to the fol-
lowing formal representation of her query:

[STS_Pattern] -
(Part) -> [Succ_Hyp]
(Part) -> [Support] -

(Inst) -> [Tool]
(Obj) -> [Knowledge_Management]

To find relevant conversations, the improvement query is projected on the STS-KB.
In this case, the STS graph representing Eugene’s mail is not retrieved, as it is not a
specialization of the query. Assuming this is the only graph in the KB, the query fails.
In a subsequent dialogue with the wizard, Mary decides to generalize her query: she
is not just interested in successful experiments, but in any experiment. The first Part-
relation of her query is therefore dropped. Querying the knowledge base again this time
returns Eugene’s graph. The Presentation Wizard uses this graph to initiate a dialogue
with Mary on whether this is what she wants. The conversation looks interesting, and
she wants to know more. The system then creates a maximal join of her query with
Eugene’s graph, stores this new graph in the KB, and initiates a new conversation to
which both Mary and Eugene are invited. The link to the initial node of this conversation
is stored with the graph in the knowledge base. The participants can then use the normal



discussion tools like e-mail and mailing lists to exchange tips and tricks. If in the future
somebody has a query like Mary’s initial one, this person will now immediately be
guided to the log of the new query, which is much more specific than the thread started
by Eugene’s initial mail.

The system has been partially implemented using Adil Kabbaj’s PROLOG+CG3.
Of course, many technical extensions are conceivable. Once pointed to relevant discus-
sions, the users could also use the more traditional discussion tool navigation function-
ality, for example search-options in a mailing list-archive, to further expand the context
of interpretation of a particular improvement proposals. Additionally, content-based au-
tomatic mail-indexing tools, such as developed in the FCA community could also be
added. However, such enriched content analysis is not the focus of this paper: our con-
tribution has been to find a subtle balance between the strength of human collaborators
(interpretation of rich e-mail content) and the power of machine systems (automatic
inferencing of complex pattern knowledge), so that current bariers to socio-technical
system evolution can be reduced.

In sum, the contribution of this approach is that collaboratory improvement is framed
as a problem of socio-technical system evolution; that these abstract ideas are opera-
tionalized in a practical use-situation ; and that a fine-balanced mix of human natural
language interaction is coupled with powerful graph matching to find links to rich hu-
man conversations, to be interpreted by people. The innovation of this approach is that
the indexing by people is very simple, and hardly disruptive, while simultaneously be-
ing semantically very rich, as the index graphs are framed in terms of a socio-technical
system improvement ontology. This meta-level reasoning, which makes good use of
generalization hierarchies of the index graphs, helps people find relevant mails more
easily than possible with current keyword searches. Such an approach will become truly
powerful when multiple collaboratories start using this or a similar ontology: cross-
community learning can then take place between communities that do not even know
each other.

5 Conclusions

Improvement patterns are an essential element of collaboratory evolution. They capture
collective wisdom and can be used in various ways, for example, in guiding discussions
or designing tools that are customized to the complex needs of a particular community.
Although improvement pattern content is quickly maturing, many process inefficiencies
of how to effectively use these many rich and - by definition - partial patterns remain.

In this paper, we proposed the outline of a semi-formal method to help collabora-
tories more efficiently establish contacts and tune in to relevant informal collaboratory
improvement discussions, across cases and communities. Our model is grounded in En-
gelbart’s context-based philosophy of the socio-technical system improvement process
in combination with a pattern-based view to deal with the partiality and specificity of
this process. We formalized this model using conceptual graphs.

The basis of the formal model is an ontology of collaboratory improvement. We
showed how the collaboratory improvement process can be modelled as a search for a

3 http://www.insea.ac.ma/CGTools/PROLOG+CG.htm



match between an improvement query graph and the graph definitions representing the
existing socio-technical system. Queries themselves become the basis for new socio-
technical system graphs. All graphs are linked to specific conversations in the collabo-
ratory. The main use of the retrieved graphs is to act as indices to previous community
discussion, and as initiators of new discussion.

The ultimate goal in collaboratory improvement is to build active knowledge sys-
tems: systems that have the capability to solve practical and complex problems. Crucial
to such systems is that they can interact and not just interface with the real world [7].
A collaboratory improvement system that would make use of the approach described in
this paper, combined with, for instance, actor-based checks for improvement opportu-
nities and automatic notification of key users, could be a major step forward on the way
to more powerful and tailored collaboratory development.

Another implication of this work, is that it may give conceptual graph theory a class
of practical and theoretical problems that do justice to its power and elegance. It has
often been said that this theory was ahead of its time, in a way a solution looking for
a matching problem. The area of collaboratory improvement, with its high significance
in for instance the research and business domains could prove to be one of the ’killer
problems’ our field has been waiting for.

By combining the representational and reasoning power of conceptual graphs with
the - fortunately - unique capabilities of human beings to interpret and frame improve-
ment problems and their solutions, we have presented one operationalization of the
essence of Engelbart’s vision on using computer technology to augment collaborative
communities. We hope that others will extend this preliminary work and use it to de-
velop the collaborative methods and systems that are essential in an ever more complex
and dynamic society.

References

1. E. Auramäki and K. Lyytinen. On the success of speech acts and negotiating commitments.
In Proceedings of the First International Workshop on Communication Modelling, the Lan-
guage/Action Perspective (LAP’96), Oisterwijk, The Netherlands, July 1-2, 1996, pages 1–
12, 1996.

2. M. Bieber et al. Towards knowledge-sharing and learning in virtual professional commu-
nities. In Proc. of the 35th Hawaii International Conference on System Sciences, Hawaii,
January 5-7, 2002.

3. J. Conklin, A. Selvin, S. Buckingham Shum, and M. Sierhuis. Facilitated hypertext for
collective sensemaking: 15 years on from gIBIS. In Proc. of the 8th International Working
Conference on the Language/Action Perspective on Communication Modelling, Tilburg, the
Netherlands, July 1-2, 2003.

4. D. Corbett. Reasoning and Unification over Conceptual Graphs. Kluwer Academic, New
York, 2003.

5. A. de Moor. Making Doug’s dream come true: Collaboratories in context. In Proc. of the
PORT Pragmatic Web Workshop, Borovets, Bulgaria, July 15, 2002.

6. A. de Moor, M. Keeler, and G. Richmond. Towards a pragmatic web. In Proc. of the 10th
International Conference on Conceptual Structures, (ICCS 2002), Borovets, Bulgaria, July
15-19, Lecture Notes in Artificial Intelligence. Springer-Verlag, 2002.



7. H. Delugach. Towards building active knowledge systems with conceptual graphs. In Proc.
of the 11th International Conference on Conceptual Structures (ICCS 2003), Dresden, July
2003, pages 296–308, 2003.

8. D. Engelbart. Coordinated information services for a discipline- or mission-oriented com-
munity. In Proc. of the 2nd Annual Computer Communications Conference, San Jose, Cali-
fornia, January 24, 1973.

9. D. Engelbart. Toward high-performance organizations: A strategic role for groupware. Tech-
nical report, Bootstrap Institute, 1992.

10. T.A. Finholt. Collaboratories as a new form of scientific organization. Economics of Inno-
vation and New Technology, 12(1):5–25, 2003.

11. G. Fitzpatrick and J. Welsh. Process support: Inflexible imposition or chaotic composition?
Interacting with Computers, 7(2):167–180, 1995.

12. J. Gillies and R. Cailliau. How the Web Was Born. Oxford University Press, 2000.
13. M. Keeler. Collaboratories: Improving theory and method. In Workshop on Innovations in

Digital Asset Management, Fraunhofer / IPSI, Darmstadt, Germany, October 6-8, 2003.
14. R. Kling, G. McKim, J. Fortuna, and A. King. Scientific collaboratories as socio-technical

interaction networks: A theoretical approach. In Proceedings of AMCIS 2000, August 10-13,
Long Beach, CA, 2000.

15. R.T. Kouzes, J.D. Myers, and W. Wulf. Collaboratories: Doing science on the Internet. IEEE
Computer, 29(8):40–46, 1996.

16. C.F. Kurtz and D.J. Snowden. The new dynamics of strategy: Sense-making in a complex
and complicated world. IBM Systems Journal, 42(3):462–483, 2003.

17. J. Lederberg and K. Uncapher. Towards a national collaboratory: Report of an invitational
workshop at the Rockefeller University, New York City, march 17-18. Technical report,
National Science Foundation, 1989.

18. I. Nonaka, R. Toyama, and N. Konno. SECI, ba and leadership: A unified model of dynamic
knowledge creation. Long Range Planning, 33:5–34, 2000.

19. NRC. National collaboratories: Applying information technology for scientific research.
Technical report, National Research Council, Committee Toward a National Collaboratory:
Establishing the User-Developer Partnership, Washington, D.C., 1993.

20. T. Renkema and E. Berghout. Methodologies for information system investment evaluation
at the proposal stage: A comparative view. Information and Software Technology, 39(1):1–
13, 1997.

21. D. Sanderson. Collaborative and cooperative mediated research. In T.M. Harrison and
T. Stephen, editors, Computer Networking and Scholarly Communication in the Twenty-First
Century University, pages 95–114. State University of New York Press, 1996.

22. D. Schuler. A pattern language for living communication. In Participatory Design Confer-
ence (PDC’02), Malmo, Sweden, June, 2002.

23. S.B. Shum and A.M. Selvin. Structuring discourse for collective interpretation. In Proc.
of Distributed Collective Practices 2000: Conference on Collective Cognition and Memory
Practices, Paris, September 19-20, 2000.

24. J. Thomas, C. Danis, and S. Greene. Socio-technical pattern language proposal. In Pattern
Language Workshop, 2002.

25. B. Wellman. Computer networks as social networks. Science, 293:2031–2034, 2001.
26. T. Winograd. A language/action perspective on the design of cooperative work, report

no.CSLI-87-98. Technical report, Center for the Study of Language and Information, Stan-
ford University, May 1987.

27. W.A. Woods. Understanding subsumption and taxonomy: A framework for progress. In
J.F. Sowa, editor, Principles of Semantic Networks: Explorations in the Representation of
Knowledge, pages 45–95. Morgan Kaufmann, San Mateo, CA, 1991.


